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Short Papers

Energy and Power Relations for an Electron Beam in
a Cylindrical Waveguide

S. R. SESHADRI, SENIOR MEMBER, IEEE

Abstract —The characteristics of the energy per unit length and power
flow are analyzed for the transverse magnetic mode supported by an
electron beam drifting with a relativistic velocity parallel to the axis of a
cylindrical waveguide. The parts of the dispersion curve corresponding to
the positive and the negative energy waves are identified.

I. INTRODUCTION

The development of relativistic electron beams has revived
interest in the free electron sources of microwaves, particularly at
millimeter wavelengths [1]-[4]. It is important to understand the
characteristics of the average energy and power flux densities of
the electron beam. These characteristics of a transversely un-
bounded electron beam are customarily used to interpret the
results obtained for an electron beam in a drift tube. In this short
paper we deduce the characteristics of the energy per unit length
and power flow in a cylindrical electron beam.

II. EXPRESSIONS FOR ENERGY AND POWER

A perfectly conducting cylindrical waveguide of radius a has its
axis coincide with the z-axis of a cylindrical coordinate system r,
¢, and z. Filling the waveguide uniformly and drifting with a
velocity Zv, is a fully neutralized electron beam characterized by
the angular plasma frequency w,. The electron beam is guided by
an axial magnetostatic field which is sufficiently strong to sup-
press the transverse motions of the electrons. The perturbed
quantities vary as exp[—i(wt— kz)]. Then, the electron beam
behaves like a dielectric [5] characterized by the permittivity
tensor € = eo( 7+ ¢ + 52¢,_) where

::Zl_wjaz/(w_kud)z" (1)

The relativistic factor a is given by a=[1—(v,/c)*]'/? where ¢
is the velocity of electromagnetic waves in free space. Sometimes

y=1/a is used as the relativistic factor [2], [6]. In (1) wz—
Ne a/myeq where N is the number density of the electron beam
in the laboratory frame, — e is the electronic charge, m, /a is the
mass of an electron in the laboratory frame and ¢, is the
free-space permittivity. The plasma frequency defined in
this manner has the advantage of being a relativistic invariant.
The fields are assumed to be azimuthally symmetric (3/9¢ = 0).
We shall consider only the TM-modes having the nonvanishing
field components H,,, E,, and E, since they include the space
charge waves. Together with (1), from Maxwell’s equations, we
find that [7]-[9]

iwege?  JE,

B = ) o (22)

_ ikc? oF,
B ey (2b)
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The solution of (3), subject to the requirement that E, is finite
for r =0 and the boundary condition that E, = 0 for r = g, yields

E, = EyJo( ponr/a) (%)
where E; is a constant and p,,, is the nth zero of Bessel function

of order m. Also, with the help of (1) and (4), @ and k can be
shown to be governed by the dispersion relation

13, olp -
I

where

F(w k): wzaz + (pOnc/a)z — (6)
’ _ 2 2_ 2.2
(0—koy)”  (0®—k%?)
Substituting (5) in (2a, b) gives
iweyc? Pon
Hy= ey P B/ (9
— ikC2 Pon
L= on k2c2)( o0 ) Eoi(ponr/a).  (Tb)

When the energy density in the magnetic field wy; =1/4 po| H,| 2
is integrated throughout the cross section of the waveguide, we
obtain that

mwic’e| E,
WH:—ao—'QL; Pondt(Pon)- (®)
M —Kk%?)
When the energy density in the electric field
1 9 1 1 (we,,
WE:ZE*'E(‘OE).E:Z€0|Er|2+Z€0T|EZIZ

is integrated throughout the cross section of the waveguide, it is
found that

_ mkPeo| By,

We Pondt(Pon)
4(w? — k%)’
mey [ Qwe,.
P B ). ()

Adding (8) and (9), and using (1) and (6), we express the energy
for unit length of the electron beam inside the cylindrical wave-
guide as

2 2 2
w,a
W= Wy + W, = Co| P/ “ (102)
(®—Kk%c?) (0—kv,)’
w OF
= —C-z—a—w (10b)
where .
C—”T€0‘12|Eo T (pon) /2. (11)

Note that C is a positive real constant for all values of w and k.
When the Poynting vector §,=1/2 Re(E X H*) is integrated
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throughout the cross section of the waveguide, we find that
n 7Tkw(,‘4€0| E0|2
P bl ) ) I

S, = pgn‘flz(pOn)
2(w?— k%)

s (12)
Similarly, when the kinetic power flux density [10] S, =
—1/4 E*+(dwe /3k) E is integrated throughout the cross sec-
tion of the waveguide, on noting that € is a function of only
k =%k, we can show that

Twwiev o Eo|?

Z(w—kod)3 (13)

S, =2 a*J{( Pox)-
Adding (12) and (13), the total power flow through the waveguide
is obtained as

ke 2 wZa?y
S=8,+8,= 5= 2Co| = (PO"C/“)2 o
(w?—k2%c?) (w—kv,)
(14a)
:203;—2—1:. (14b)

The group velocity can be deduced from the kinematic consid-
erations using (6) with the following result:

_dw _,dw_ _0F s0F
vg—gl-(——z%——z&; % (15)
The group velocity can also be evaluated from the dynamic
considerations using (10b) and (14b) as v, =S/ W which, as it
should be, is equal to that deduced in (15).

It is seen that F(w, k), W, and § are invariant under the
transformation w — — w and k — — k. This symmetry enables us
to treat these quantities for only positive values of w. An analysis
of (6) shows that there is a field wave (FW) which exists for
above a cutoff value which is slightly below [wja® +
(Ponc/a)*]"/2. At the minimum value of « of propagation of the
field wave, k is slightly negative. For k > 0, for the FW, w > kv,.
There are two space charge waves (FSW, SSW). For relativistic
velocities, k>0 for the two space charge waves (see Fig. 1(a)).
For the fast space charge wave (FSW), w is slightly greater than
kv, and for the slow space charge wave (SSW) w is slightly less
than kv,. For nonrelativistic velocities, that is for v,/c suffi-
ciently less than unity, the space charge wave SSW has another
branch (SSWN) for which k£ < 0 (see Fig. 1(b)).

For k<0, (10a) shows that W > 0. For k>0, if w > kv, again
(10a) shows that W > 0. Therefore, it follows that W for the wave
FW, the space charge wave FSW, and the branch SSWN of the
space charge wave SSW are all positive. These results can be
confirmed and the sign of W of the wave SSW can also be
obtained by examining the plot of F as a function of w for k>0
as shown in Fig. 2(a) for relativistic velocities and in Fig. 2(b) for
sufficiently small nonrelativistic velocities. For |w| > kc, it is seen
from (6) that F>0. For |w|—o0, F—0. At w= * ke, F be-
comes infinite and changes sign. F — + o0 as w ~ ko, from either
side. F can be shown to have two real zeros for |w| < kc. These
zeros occur in the ranges kv, < w <kc and — kc<w < kuv,. For
the latter zero, w >0 for relativistic velocities and w <0 for
sufficiently small nonrelativistic velocities. Also, (6) shows that F
is a monotonically increasing function of w for w <kv, and a
monotonically decreasing function of w for w > kv,. Only the
shape of F as a function of w for positive values of F is required.
The intersection points of the various branches of the curve F
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Fig. 1. Dispersion curves for (a) relativistic velocities and (b) sufficiently
small nonrelativistic velocities A: field wave (FW); B: fast space charge
wave (FSW); C: slow space charge wave (SSW); D' the branch (SSWN) of
the slow space charge wave.
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Other symbols are the same as in Fig. 1

with the straight line F =1 correspond to the solutions of (6). The
various branches of the dispersion curves shown in Fig. 1 are
related to the various branches of the curve F, as indicated in Fig.
2. Since 3F/ 3w < 0 for the FW and the FSW branches, it follows
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Other symbols are the same as in Fig. 1.

from (10b) that W > 0. For the SSW branch, since 3F/dw and ©
are positive, (10b) shows that W< 0. Using the symmetry under
the transformation w - — w and k — — k yields that the part of
the SSW branch having « <0 corresponds to the SSWN branch.
For this branch, since 8F/9w >0 and » <0, from (10b) we see
that W > 0. Thus, the energy per unit length of the electron beam
is positive for all branches of the dispersion curve except the SSW
branch (0 < w < kv,) for which W< 0.

III. SIGN OF ENERGY AND POWER

For k>0 and w> kv, (14a) shows that S> 0, that is for the
part with k>0 of the wave FW and for the wave FSW, the total
power flow in the direction of the beam is positive. The sign of §
for the remaining branches of the dispersion curve can be ascer-
tained by examining the plot of F as a function of k for w >0 as
shown in Fig. 3(a) for relativistic velocities and in Fig. 3(b) for
sufficiently small nonrelativistic velocities. For |k|<w/c, it is
seen from (6) that F>0. At k= = /¢, F becomes infinite and
changes sign. Therefore, as & is increased from —w /¢ to + w /¢,
F decreases from + oo, reaches a positive minimum value, and
then increases to +o0. F— +o0 as k- w /v, from either side.
Hence, it follows from (6) that as k is increased from w/c to
w/v,, Fincreases monotonically from — oo, goes through zero to
+oo. F is zero for two finite real values of k. As mentioned
previously, one of the zeros occurs in the range o /c<k < w/v,.
For relativistic velocities corresponding to pg, /a > w,a /vy, the
second zero occurs in the range w /v, <k <oco. For this case,
F <0 for | k| - co. Therefore, as k is increased from w /v, to o,
F decreases from +oo monotonically to zero, goes negative,

reaches a negative minimum value, and then monotonically in-
creases to negative zero (not fully shown in Fig. 3(a)). As k
decreases from —w /¢ to — oo, F increases monotonically from
— oo to negative zero. For sufficiently small nonrelativistic veloci-
ties corresponding to py,/a <w,a/v,, the second zero of F
occurs in the range —oo <k < —w/c. For this case, F>0 for
|k| — oo. Therefore, as k is increased from /v, to oo, F de-
creases monotonically from + oo to positive zero (see Fig. 3(b)).
As k decreases from —w/c¢ to —oo, F increases from — oo
monotonically to zero, goes positive, reaches a positive maximum
value, and then monotonically decreases to positive zero. As
before, only the shape of F as a function of & for positive values
of Fis required. The intersection points of the various branches
of the curve F with the straight line F=1 corresponds to the
solutions of (6). The various branches of the dispersion curve
shown in Fig. | are related to the various branches of the curve F,
as indicated in Fig. 3. For k >k, (which is negative) for the
wave FW, for the space charge wave FSW and for k<k,,,
(which is negative) for the branch SSWN of the space charge
wave SSW, since dF/dk > 0, (14b) shows that $> 0. For k < K n
of the wave FW, for the wave SSW and for k >k, of the wave
SSWN, since dF/3k <0, it follows from (14b) that $<0. In
other words, for the space charge wave SSW, S < 0. For all other
branches of the dispersion curve, the sign of S is the same as the
sign of the slope of the dispersion curves (shown in Fig. 1) with
respect to k.
IV. ConcrusioN
In conclusion, we have deduced the energy per unit length and

power flow in an electron beam contained by a cylindrical
waveguide.
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Single-Frequency Electronic-Modulated Analog Line
Scanning Using a Dielectric Antenna

R. E. HORN, SENfOR MEMBER, 1EEE, H. JACOBS, FELLOW, IEEE,
K. L. KLOHN, MEMBER, IEEE, AND E. FREIBERGS, MEMBER, IEEE

Abstract —A line scanning antenna is described whereby means of
periodic perturbations and conduetivity changes in p-i-n diode modulators,
analog angular shifts of 5° can be obtained. The system is electronically
modu_lated with relatively small power requirements.

I. INTRODUCTION

In a recent report {1], an electronic modulated beam-steerable
silicon waveguide array antenna was described. The construction
of this device is shown in Fig. 1. It consisted of a silicon dielectric
waveguide (runner), the ends of which were inserted into a metal
wavegiide and operated in the region of 60 to 70 GHz. The
overall circuit arrangement was also described in the above
referenced report. The basic concept for the operation of this
device is as follows. As the energy propagates down the dielectric
runnet, an evanescent portion of the wave is in the air space
surrounding the dielectric (Fig. 2) both in the vertical and hori-
zontal directions. The perturbations on the top surface {copper
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Fig. 2. Silicon waveguide, cross section, and E-field distribution. (a) Diodes
unbiased (ideal), (b) diodes partially biased (ideal), (c) diodes fully biased
(ideal), (d) field distribution diodes unbiased, (e) E-field distribution diodes
small bias, (f) F-field distribution diodes fully biased.

strips) transform propagated energy to radiation. At any given
frequency, the angle of radiation is a function of the guide
wavelength A, and the perturbation spacinig d. In this arrdange-
ment, d is fixed but the guide wavelength can be modified by the
p-i-n diode modulators attached to the runner side wall. If
the diodes are unbiased the wave will continue propagating down

“the runner with a guide wavelength A,. When the diodes are

biased in the forward direction, they become conductive and act
as if a conductive wall were placed on the runner sidewall (Fig.
2). This results in a new guide wavelength A’,. The result of the
change in wavelength is that the radiation angle § is changed,
thus giving a line scan. The problem here is that the line scan is
digital. There is a loss which occurs with an increase in the
current in the modulating p-i-n diodes from 0 level to higher bias
currents. This was shown in (1], where with zero bias an expected
radiation pattern is obtained. With 300 mA (100 mA per diode)
the pattern is-shifted, A =9.5°, but at intermediate currents, the
radiation pattern deteriorated (i.e., attenuated and broadened).
This behavior can be explained by realizing absorption of energy
by the p-i-n diode modulators occurs when the diode current is
low, since the conductivity of the intrinsic () region is inter-
mediate between an insulator and a metallike conductor. In the

_intermediate conductivity state, the energy -is not only being

absorbed but is refracting into the lossy intrinsic medium. The
fields in the runner and p-i-n modulator are envisaged as shown
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